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Asymptotic functional models have been formulated and numerically tested of an unsteady 
diffusion in particles of an arbitrary shape and under arbitrary course of the surface concentra
tion. 

Models of transport phenomena in heterogeneous two-phase systems usually cannot 
work with exact geometry of individual particles of the dispersed phase. It is there
fore useful to search for such descriptions of the transport properties of heterogeneous 
systems in which the geometrical structure is characterized by a limited number 
of parameters, most conveniently by the (single) equivalent diameter of particles of the 
dispersed phase. Typical example of this approach is Aris'l formulation of the 
generalized description of the effectiveness of catalytic pellets of irregular shape. 
In other situations the diversity of studied phenomena cannot be adequately expressed 
by a single geometrical parameter and one has to distinguish between dynami~ 
transport properties of individual particles in dependence on their shape2

• 

In the presented paper, taking a relatively simple problem of an unsteady diffu
sion without chemical reaction in particles of Constant shape, for constant diffusivity 
and an arbitrary course of the surface concentration, we have studied general dynamic 
conditions permitting formulation of a generalized description of concentration 
changes in a particle of an arbitrary shape. It turns out that for an arbitrary course 
of the surface concentration it suffices to distinguish between individual kinetic 
regimes by a single dynamic criterion, the difffusional Deborah number, De. 

FORMULATION 

Consider the case of an unsteady diffusion of an active component (AC) with a con
centration field e(t, r) in a permeable particle of volume V and surface area A. Let 
us confine ourselves to the cases when the original state of the particle at a time 
t = 0 is one of concentration equilibrium 

c = e., (r E A, t ~ 0) . (1) 
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Unsteady Diffusion in Irregular Bodies 1081 

This state is being disturbed in the ensuing process by concentration changes of AC 
at particle's surface 

C = cA(t) = Co + f(t) , (r E A, t > 0) . (2) 

The diffusion of AC in the material of the particle is assumed to be governed by the 
Fickian relations with constant diffusivity, Ds 

(3) 

For a solution of the problem we shall take transient development of the mean 
concentration of AC in the particle 

(4) 

or the total amount of AC exchanged between the particle and the surroundings 

(5) 

The constraint between the parameters CM' qM' the former of which is averaged 
over particle's volume, the latter over its surface, expresses 'the integral balance 
of AC 

(6) 

where 

Rs = ViA (7) 

is Aris's equivalent pafticle diameter. 
For a given transient development of the surface concentration of AC the set 

(1) -(3) poses a boundary value problem already studied for a number of particle 
shapes3 ,4. In view of the linearity of the problem its general solution for an arbitrary 
time course of the surface concentration may be expressed explicitly by means of the 
convolution integraI3 - 5 • These generally known results shall be used to describe 
the dynamic properties of individual particles in terms of a response (as a time course 
of the mean concentration of AC) to external disturbances repre~ented by the tran
sient development of the surface concentration of AC. 

From a mathematical point of view we shall be interested in what response 
function CM(t), t ~ 0, is assigned to an influence function cA(s), ° ~ s ~ t, for a par-

Collection Czechoslov. Chem. Commun. [Vol. 44) [19791 



1082 Wein: 

ticle of an arbitrary shape. This assignment for a particle of given shape may be 
formally expressed by 

(8) 

The symbol ij here represents a mathematical object called the response functional 6 • 

To the mathematical model (1)-(3) and hence also to the response functional 
implicitly defined by the model we may apply current methods of the theory of similar
ity. The similarity analysis indicates that for all geometrically similar particles 
of various sizes or various diffusivities the response functional may be expressed 
in a common normalized form containing as a single dimensional constant - the 
characteristic time. Its explicit definition depends on the choice of the characteristic 
dimension of the particle. Considering the form of the normalized integral balance 
(6) we shall select for the characteristic length the parameter Rs from Eq. (7) and 
define the relaxation time as 

(9) 

On normalizing both time variables t and s in the definition of the response functional 
(8) by the parameter As as x = slAs, e = tlAs we arrive at the formulation of the 
response functional 

(10) 

having identical structure for all geometrically similar particles. 
In the description of the transient course of the surface concentration one can 

always introduce a characteristic time interval to possessing e.g. the meaning of the 
overall duration time of the process, period of the process, etc. On expressing the 
course of the function cA(t) in the normalized form with two adjustable dimensional 
parameters, co, to 

(11) 

we arrive at the dimensionless form of the response functional 

(12) 

with a dimensionless dynamic criterion, the diffusional Deborah number 

(13) 

For a given type of time variations of the surface concentration of AC, represented 
by the function F(T) = idem, and for given particle geometry, represented by the 
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normalized response functional ~*, De becomes a quantitative measure of the rate 
of concentration changes taking place within the particle. For De --. 0 changes 
are very ~ low; for De -+ 00, on the contrary, they are very fast. 

We shall show now that for De -+ 0 and for De -+ 00 the response functionals 
~* taken on an identical asymptotic structure for particles of an arbitrary shape. 
This offers the advantage of an a priori choice of the normalizing parameter As 
in the form (9). Further we shall show that, spare for the region of medium rate 
concentration changes (usually for 0·1 < De < 10), the course of the mean con
centration may be approximated by means of simple functional models of integro
differential type7. These contain a single shape factor each: /30 (for De ~ 1) and 
/3 00 (for De ~ 1). 

Note: From the general theory of unsteady diffusion 3
-

5 it follows that the res
ponse functional ~ for a given particle shape may be characterized by a real function 
H( e) appearing in the convolution representation of the response functional*) 

~*[F(De x)J~ = f0 dHee - x) F(De x) dx. 
o de 

(14) 

The function H takes the physical meaning of the time course of the mean concentra
tion following a step change of the surface concentration, F(O) = 0, F( e) = 1 for 
e > O. Fig. 1 plots the function H for three bodies of considerably different geometry: 
a sphere, a cylinder and a slab. From the figure it is apparent that individual courses 
do not differ appreciably and that for e -+ 0 or e -+ 00 they coincide. This con
clusion is a heuristic starting point of all subsequent considerations aimed at quantifica
tion of the mentioned analogy in structures of the response functionals of particles 
of different shape. 

SLOW AND FAST PROCESSES 

Intuitively it is felt that at sufficiently slow changes of the surface concentration 
the concentration differences between the surface and the core tend to fade out. 
Under such conditions we may write approximately 

(15) 

This approximate description, adequate for sufficiently slow processes, shall be 
termed the equilibrium asymptote. 

Intuitively it seems also acceptable that the disturbances in the original equi
librium concentration field in the particle, C = Ce, following very swift changes 

See also the explicit representation in Table I. 
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of the surface concentration in an early stage of the process, shall be felt only within 
a very thin shell adhering to the surface. As long as the thickness of this layer is 
much smaller than the radius of curvature of the particle as well as the diameter 
of the particle, the curvature of the surface may be neglected and the shell of the 
material below the surface may be looked upon as part of an infinite semi-space 
confined by a plane surface. 

This concept leads to an approximate undimensional model of penetration of AC 
into the material given according to Eqs (1) - (3) by the following set of equation 

atC = Ds a;xc x ~ 0, t ~ ° 
c = c. x ~ 0, t ~ ° (16) 

c = J(t) + c.; x = 0, t> 0. 

The general solution of this set is known3
,4 and leads to the following expression 

for the net flux of AC across a unit interfacial surface 

(17) 

where d;" is an integro-differential operator7
,8 of the order (-cx:), see the Appendix I. 

For particles of a finite volume V and an infinite surface A one can obtain from 
Eqs (6) and (17) an approximate expression for the transient development of the 
mean concentration 

where 

This asymptotic relation, whose validity is limited to sufficiently fast or sufficiently 
short-lived processes, shall be termed the penetration asymptote. 

ASYMPTOTIC REPRESENTATION OF THE RESPONSE FUNCTIONAL 

In the adopted and already dimensionless notation, Eqs (15) and (18) may be expressed 
in the form 

F(De B); De -t 0 
eM = !j*[F(De c)]~ ~ { 

da1/2 F(De B); De -t 00 • 

(19a) 

(19b) 

From the results pertaining to a step change of the surface concentration of AC 
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in Fig. 1 it is apparent that the asymptotic representation (19a,b) of the response 
functional may have a rather broad interval of validity. For other types of time varia
tions of the surface concentration, however, the region of applicability may be sub
stantially reduced. It is therefore necessary to examine the formal structure of the 
response functional for De -4 0 or De -4 00 in more detail. 

The application of the Laplace transforms to mathematical model (1)-(3), or, 
directly to the convolution representation of the response functional from Eq. (14), 
can yield the general expression for the .I!-transform of the normalized mean con
centration 

(20) 

in the form 

(21) 

where 

F(p)=.I!F(e) and R(p)=.I!H(e). 

For some particle shapes one can find explicit forms of the function R(P) in terms 
of the elementary functions, series, etc3

,4. Especially simple expressions of H(P) 
may be found for particles with so many symmetries that the 'problem (1)-(3) 
becomes from the geometrical point of view a undimensional one. Typical examples 
are3

,4 spherical particles 

P R(P) = p- 1 /2 (cotanh (3Pl/2) _ P-l/2j3) , 

cylindrical particles 

FIG. 1 

Transient Course of the Normali2ed Mean 
Concentration eM = H( e) after a Step 
Change of Surface Concentration 

1 Slab, 2 sphere, 3 cylinder. Solid lines 
represent exact courses of CM( e), broken 
lines the "fast" asymptotes in Eq. (24a) 
and dash-and-dot !.ines the equilibrium 
asymptotes in Eq. (19a). 
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or slabs 

P R(p) = p- I / 2 tanh (p I/ 2) , (22c) 

The functions (22a,b,c) for P --+ 00 or P --+ 0 may be expanded into power series 
of similar structure 

(23a) 

or 

(25b) 

with the shape coefficients Poo, Po given in Table 1. Substituting the expansions 
(23a,b) back into Eq. (21) one obtains by formal inverse term-by-term transforma
tion the asymptotic representations of the response functional t'Y* in the form 

. {(de1/2 
- Poode1

) F(De e) + eoo , De --+ 00 

t'Y*[F(De x)J~ = 
(1 - Pod~) F(De e) + eo, De --+ 0, 

(24a,b) 

TABLE I 

Parameters of Exacta and Asymptotic Representations of the Response Functional in Eq. (24a,b) 

Values Sphere 2R Cylinderb Slab 
in diameter 2R in diameter 2R thick 

Rs R/3 R /2 R 
2/3 1 2 

bk (krr/3)2 ( lXk/2)2 «k - 1 /2) rr)2 

Poo 1/ 8 1/4 0 

Po 3/5 1/2 1/3 

a a,b are parameters of the exact representation3 •4 of the kernel of the response functional (14) 
in the form 

dH(e - x) = a:i: exp (bk(e - x» ,. 
de k=l 

b Ilk are roots of the equation JO(lXk) = 0 where Jo is the Bessel function of the zero-th order, 
first kind. 

Collection Czecho.slov. Chern. Commun. [Vol. 44J [1979] 



Unsteady Diffusion in Irregular Bodies 1087 

The errors Goo or Go of these representations may be expressed generally in the form 

or 

GO = O(d~ F(De e)) = di F(Y) 0(De2
) • (25a,b) 

For a given function F(T) thus Goo = O(De - 3/2) , Go = 0(De2
), as the expressions 

d~ F(T) are independent of the time variable T = tlto = De e. 
If for a given F(T) the function CM( e, De) can be expanded into a power series 

with respect to De at De ~ 0 and De ~ 00 , the first terms of this ~ .eries, according 
to the theorems of the Laplace transform, shall be identical with the corresponding 
terms of the asymptotic functional expansions in Eqs (24a ,b) . If the asymptotic 
expansions of the function CM(e , De) take a different form , e.g. CM = De- 1/ 2 <Po(T) + 
+ De- 1 <P 1(exp (-De T)) for De ~ 00 or CM = t/Jo(T) + De "'1 (exp (l/De T)) 
for De ~ 0, the formal asymptotic expansions fail in the sense that all but the first 
terms vanish for the rest of the series converges to zero for De ~ 00 or De ~ 0 
more rapidly than any power of De. 

With the above stipulation, Eqs (24a,b) may be regarded to be general asymptotic 
representations of the response functional for particles of an arbitrary shape. Values 
of the shape coefficients f30, f300 for spherical and slab particles may be regarded 
as limits for f30 and f3 00 for a particle of an arbitrary shape. 

For the power-law type course of the surface concentration 

j(s) = Ksn
, 0 ~ s ~ t, (26) 

one can introduce as the only characteristic time scale the time of duration of the 
process, to = t, i.e. tl/..s = e = De-I. In addition, it is convenient to introduce 
a characteristic concentration by Co = K/"~, leading to the expression of CM = 
= (CM - co)/(K;"~) in the form 

(27) 

Asymptotic representations of thus introduced mean concentration CM = cM(e, n) 
may be expressed (see the Appendix) as 
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Fig. 2 shows the exact3 and approximate courses of C~ for n = 1, i.e. for the linear 
increase of the surface concentration. The case n = 0, i.e. the step change of the 
surface concentration has been examined earlier, see Fig. l. 

As the second example we took exponential transition of the surface concentration 
from an equilibrium value, Ce , to another equilibrium value, Ce + Co, i.e. cA = c. + 
+ co(1 - exp ( - t/to)), or 

F(T) = 1 - exp ( - T) . (29) 

Exact solution to this case can be also found in the literature3
•
4

. Asymptotic repre
sentation of the concentration response from (24a,b) can be found for De -+ 0 
in the form 

eM ~ 1 - (1 + Po De) exp ( - T) (30a) 

and for De -+ 00 in the form 

CM ~ 2-1/2(e1/2 - De- 1/ 2 exp (-T). 

f
Tt / > 

• 0 exp Z2 dz - Poo De- 1(T - 1 + exp (-T))). (30b) 

The exact and asymptotic courses of CM for De equal 0·1, 1·0 and 10 are shown 
in Figs 3 - 5 for a sphere and a slab. The case of a long cylinder falls always 
between corresponding courses for the slab and the sphere; these, however, are lJ,.<;?t 
shown. 

As the third example we shall consider a periodic stationary concentration process 
CA(t) = Co sin (wt), i.e. 

c'" M 

/ 
/ . 

I'
/,:' 

F(T) = sin (T) (31) 

FIG. 2 

Transient Course of the Normalized Mean 
Concentration C,:'i = (cM - ce)/(Kt)D) after 
a Linear Change of Surface Concentration, 
n = 1. 

1 Slab, 2 sphere. Solid lines represent 
exact courses3 of C~:, broken lines "fast" 
asymptotes in Eq. (24a), dotted line the 
"slow" asymptote in Eq. (24b). Penetration 
asymptote in Eq. (J9a) is identical with the 
slow asymptote for slab particles. 
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Due to . the linearity of the response functional the resulting periodic course of the 
mean concentration may be generally expressed in the form 

(32) 

where A, B and Co, TO are some functions of the parameter De and it holds that 
CO = (A2 + B2)1 /2, TO = arctg (B/A). 

For slab bodies the exact solutions of this problem may be found in the form 
A = (sinh a cosh a + sin a cos a)/C, B = (sinh a cosh a- sin a cos a)/C, where 
C = 2a (sinh2 a + cosh2 a), a = (De/2)1/2, and for spherical bodies the exact 
solution takes the form A = (sinh a cosh a - sin a cos a)/C, B = (sinh a cosh a + 
+ sin a cos a)/C - 3/2a- 2

, where C = 2a (sinh2 a + cosh2 a), a = 3(De/2)1/2). 
Asymptotic solutions to this problem can be found (see the Appendix) using 

methods of integro-differential calculus in the form 

(2 Detl /2 + O(De- 3/2), (2 Detl /2 - Per; De - I, De -+ 00 (33) 

A ~ t + O(De2) B ~ {po De + O(De2), De -+ 0 

The most important characteristics of periodic concentration changes is the ampli
tude of the mean concentration, Co. Its courses in dependence on De following from 
the exact and asymptotic solutions for the slab and the sphere are shown in Fig. 6. 

We have examined three considerably different transient developments of the 
surface concentration. From Figs 1-6, showing the exact courses of the normalized 

FIG. 3 

Transient Course of the Normalized Mean 
Concentration CM after an Exponential Chan
ge of Surface Concentration, De = 0·1 

Same caption as for Fig. 2. 
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FIG. 4 

Transient Course of the Normalized Mean 
Concentration CM after an Exponential 
Change of Surface Concentration, De = 1 

Same caption as for Fig. 2. 
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mean concentration, CM' in comparison with individual types of asymptotic approxima
tions, though it is apparent that the concentration respomes have in all cases certain 
identical features. The results plotted in Figs 1- 6 may be summarized as follows: 

a) Exact courses of the concentration responses, CM(e), for particles of various 
shapes but identical As mutually differ by at most 10 to 20% of the instantaneous 
value and so only in region of medium rate processes, De ~ 1. With this accuracy 
the generallized descriptions of unsteady diffusion, based on the characteristic 
particle diameter, Rs, or corresponding relaxation time As = R;j Ds, are generally 
applicable. . 

b) In region of asymptotically fast phenomena, De ~ 10 or asymptotically slow 
phenomena, D~ ~ 0·1 the concentration responses of particles of different shape 
and identical As do not differ significantly and may be approximated to a usually 
sufficient accuracy by the equilibrium asymptote from Eq. (19a,b). 

c) Concentration responses for particles of individual shapes are approximated 
with an accuracy better than 2% by the appropriate fast or slow asymptote from 
Eq. (24a,b) over very wide intervals of De which partly overlap in the neighbourhood 
of De = 1. To an accuracy better than 2% one can obtain approximations according 
to the slow or the fast asymptote for De ~ 0·5 or.De ~ 2. 

CONCLUSION 

The dynamics has been studied of unsteady diffusion in individual particles of various 
shapes under conditions when the concentration of the transported active component, 

i 
;' 

;' 
i 

/ 

/ 
/ 

;' 
I 

I 1 
b 

o~/~----~O~5~------~1~O----8V-2--~1·S oL-------~---------+---D-~·~-V~2--~ 

FIG. 5 

Transient Course of the Normalized Mean 
Concentration eM after an Exponential 
Change of Surface Concentration, De = 10 

Same caption as for Fig. 2. 

FIG. 6 

Amplitude of the Mean Concentration CO 
as a Function of the Rate of Periodic Changes 
of the Surface Concentration 

Same caption as for Fig. 2. 

Collection Czechoslov. Chern. Commun. [Vol. 441 [1979) 



Unsteady Diffusion in Irregular Bodies 1091 

(Ae) on particle's surface is uniform but varies with time. The dynamic properties 
of particles are characterized by the linear response functional, (J, assigning to a given 
transient development of the surface concentration cA(t) corresponding course 
of the mean concentration cM(t) = (J[CA(S)]~. 

The principal result of this work is thought to be the formulation and the test 
of the approximate representations (19) and (24) of the response functional for 
asymptotically fa~t and slow processes. Based on this test it may be taken for proven 
that in region of asymptotically fast or slow processes the concentration response 
is entirely independent of particle shape. A quantitative measure of whether a given 
process is asymptotically fast or slow is the value of the diffusional Deborah number, 
De = As! to . to is a characteristic time scale of the process. For processes with a mono
tonous and sufficiently smooth course of the surface concentration, with the power
-law type coune as a typical example, to represents the total duration of the process, 
for periodic processes their period. 

The dependence of the concentration response on particle shape is sufficiently 
accurately characterized by two shape coefficients, namely 130 in region of slow and 
1300 in region of fast processes. The kinetic regime region, where the shape coefficient 
in the approximate description of the concentration processes markedly improves 
the accuracy of the approximation, however, is much too narrow and amounts 
to less than an order of magnitude in the neighbourhood of De = 1. 

An example of the generalized description of an unsteady concentration process 
for particles of different shape, including irregular particles, has been presented 
in Aris' work2 on the dynamics of axial di spersion of a concentration pulse in a column 
packed by nonspherical particles. The conditions considered in the work (Gaussian 
axial profile of concentration of AC in the carrier fluid) implicitly restrict the kine
tic regime to slow processes, where, according to our concept, the factor 130 should 
become effective. Indeed, Aris' shape factor x is related to our parameter 130 by x = 

= 3130' Ref. 2 tabulates values of x for particles of different shape. The difficulties 
with the definition of the shape factor, mentioned by Aris in the concluding part 
of his work2 , however, are not so much associated with the problem of alternative 
definition of the shape factor as with the problem whether we are justified to model 
additional diffusional resistances within the ambient liquid by means of empirical 
"film" transfer coefficients. 

APPENDIX 

The asymptotic representations of the response functional di~cussed in the paper make use of the 
so-called fractional calculus or the "differentegrals of noninteger order,,7. These operators 
may be introduced through the Riemann-Liouville integral 

d;« f(t) = _1_ II (t - S)«-l f(s) ds , 0 < C( ~ 1 
r(C() 0 
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and extended to all real values of 0: by 

d? j(t) = j(t) , 

d~ j(t) = ~ j(t) , 
dt 

d~+b j(t) = d~(d~ j(t)) = d~(d~ j(t)) , 

for all 0, b or (0 + b) times differintegrable functions. 

Wein: 

(D2) 

(D3) 

(D4) 

In the construction of asymptotic approximations of the concentration responses we have 
used primarily the following results 7 of the differintegral calculus: 

The substitution rule for changes of independent variable 

(x = ay, F(y) = j(ax)) = d~" j(ax) = a- IL dy-« F(y) . (D5) 

The expression of the differintegral of a power function 

d;I/2 tn = /n+l/2 n-1/2fl (1 _ xtl/2 xn dx = r(n + 1) tn+1/2. (D6) 
° r(n + 3/2) .. 

Asymptotic expression for the differintegral of the sin (cot): 

d;1/2 sin (wt) ~ W- 1/2 (sin (wt - n/4) + O((wttl/2)) , t -+ 00 . (D7) 

LIST OF SYMBOLS 

A particle surface area 
ce equilibrium concentration of AC, (1) 
Co characteristic concentration of AC, (11) 
cM mean concentration of AC in particle, (4) 
CA particle surface concentration of AC, (2) 
CM = (cM - ce)/co normalized mean concentration 
C:t normalized mean concentration, (27) 
CO amplitude of periodically variable mean concentration 
d t-

1 / 2 integrodifferential (-1/2) order, see Appendix 
Ds diffusivity of AC in material of particle 
De = AS/1o diffusional Deborah number 
f(t) function determining the course of cA. (2) 
F(T) normalized function (11) 
H( 8) course of eM after a step change of surface concentration 
10 ,11 modified Bessel functions 
qM overall flux of AC through a unit surface, (5) 
Rs = VI A Aris' characteristic particle size 

auxiliary time variable, 0 ;;;; s ;;;; 1 

time 
to 
V 

characteristic time interval, (11) 
particle volume 
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Po 
P«:> 
e= t / )..S 

)..5 = R~/Ds 

shape factor. defined by Eq. (23a) 
shape factor, defined by Eq. (23b) 
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